Translation of Biologically-inspired Multifunctional Architected Materials

Kisailus Biomimetic and Nanostructured Materials Lab University of California at Irvine Prof. David Kisailus david.k@uci.edu

Kisailus Biomimetics and Nanostructured Materials Lab

PI: Professor David Kisailus
Team: 2 postdocs, 6 Ph.D. students, 11 undergrads
Fields: Materials Science & Engineering, Molecular, Ecology and Evolutionary
Biology, Chemical, Mechanical, & Aerospace Engineering, Organic Chemistry

2 Main Thrusts: Biomimetics and Bio-inspired Nanostructured Materials

Nature offers multiple comparatives of tough materials

Common Design Themes Identified: Multiple structural design elements from nano – mm scale

Adapted from Meyers et al. Adv. Mater. 2015, 27, 5455–5476

Mechanical Advantages of Natural Materials

Huang, Kisailus, et al. Advanced Materials, 2019

Wegst, Ritchie, *et al., Nature Materials*, 2015

- Materials toughness and strength are usually mutually exclusive
- Biological materials such as bone and nacre show both high strength and toughness
- Hierarchical assembly key in maintaining toughness

Biological Materials: Multiple structural design elements from nano – mm scale

Huang, <u>Ritchie, McKittrick, Zavattieri, Kisailus</u>, *et al. Advanced Materials*, 2019 *cited 230+ times – *Review highlighting some of our MURI's major findings*

Helicoidal fracture pattern propagating between layers, with a rotating crack front that remains parallel to the fibers without severing them

Leverage Successful Biological Adaptations to Reveal New Scientific Mechanisms that Underpin Structure-Function Relationships

Translate via Biomimicry Towards Advanced Engineered Materials

Commercialization and Integration into DoD, Auto, Aerospace, Sports Applications

Self Assembled CaCO₃-based Helicoids

MICRO

Chitin Biomineral-inspired hybrids forming elically ordered structures are leveloped by T. Kato and co-workers on page 5127. These helical hybrids consist of liquid-crystalline chitin and CaCO₃. They resemble the structures of crustacean cuticles such as the exoskeleton of a lobster or crayfish. These hybrids are formed through CaCO, crystallization on the liquidcrystalline chitin templates. Polymer-stabilized amorphous CaCO₃ is incorporated into the liquid-crystalline chitin templates. This approach is useful for the development of new hierarchical hybrid materials from abundant natural resources.

Formation of Helically Structured Chiltin/CaCO, Hybrids through an Approach Inspired by the Biomineralization Processes of Cristacean Cuticles

Bifunctional Fusion Protein Chitin binding domain (ChBD)
CaBP-ChBD
Urea, Ca²⁺, Urease
Hydrolysis for CaCO₃ formation on chitin
CaCO₃

 Controlled nano structures on solution-processed inorganic/organic film for liquid crystal application Journal of Sol-Gel Science and Technology (IF 2.606) Pub Date: 2022-09-30, DOI: 10.1007/s10971-022-05940-8 Dong Hyun Kim, Ju Hwan Lee, Dong Wook Lee, Jin Young Oh, Jonghoon Won, Yang Liu, Dae-Shik Seo

- The Role of Intrinsically Disordered Proteins in Liquid–Liquid Phase Separation during Calcium Carbonate Biomineralization Biomolecules (IF 6.064) Pub Date: 2022-09-09, DOI: 10.3390/biom12091266 Aneta Tarczewska, Klaudia Bielak, Anna Zoglowek, Katarzyna Sołtys, Piotr Dobryszycki, Andrzej Ożyhar, Mirosława Różycka
- Precipitation of calcium carbonate in the presence of rhamnolipids in alginate hydrogels as a model of biomineralization *Colloids and Surfaces B: Biointerfaces* (IF 5.999) Pub Date: 2022-08-02, DOI: 10.1016/j.colsurfb.2022.112749 Natalia Czaplicka, Donata Konopacka-Łyskawa, Agata Nowotnik, Aleksandra Mielewczyk-Gryń, Marcin Łapiński, Rafał Bray
- Characteristics of Calcium Carbonate Crystals Mediated Bacillus cereus
 Geomicrobiology Journal (IF 2.412) Pub Date: 2022-06-15 , DOI: 10.1080/01490451.2022.2087807
 Hatice Aysun Mercimek Takci, Pemra Bakirhan, Kivilcim Caktu Guler
- Biomineral-Inspired Colloidal Liquid Crystals: From Assembly of Hybrids Comprising Inorganic Nanocrystals and Organic Polymer Components to Their Functionalization

Accounts of Chemical Research (IF 24.466) Pub Date: 2022-06-14 , DOI: 10.1021/acs.accounts.2c00063 Masanari Nakayama, Takashi Kato

 Effects of Chloride, Sulfate and Magnesium lons on the Biomineralization of Calcium Carbonate Induced by Lysinibacillus xylanilyticus DB1-12

Geomicrobiology Journal (IF 2.412) Pub Date: 2022-06-03 , DOI: 10.1080/01490451.2022.2079776 Huaxiao Yan, Meiyu Huang, Tiantian Wang, Yudong Xu, Long Meng, Lanmei Zhao, Zuozhen Han, Jihan Wang, Maurice E. Tucker, Hui Zhao

 Well-ordered nanostructured organic/inorganic hybrid thin film construction via UV nanoimprint lithography applicable to liquid crystal systems

Journal of Applied Polymer Science (IF 3.057) Pub Date: 2022-04-18 , DOI: 10.1002/app.52445 Dong Wook Lee, Jong Hoon Won, Dong Hyun Kim, Jin Young Oh, Dae-Hyun Kim, Yang Liu, Dae-Shik Seo

- Biomineralization of calcium carbonate under amino acid carbon dots and its application in bioimaging Materials & Design (IF 9.417) Pub Date: 2022-04-09 , DOI: 10.1016/j.matdes.2022.110644
 Zongqi Feng, Tingyu Yang, Tiantian Liang, Zhouying Wu, Ting Wu, Jianbin Zhang, Lan Yu
- Ion Pathways in Biomineralization: Perspectives on Uptake, Transport, and Deposition of Calcium, Carbonate, and Phosphate Journal of the American Chemical Society (IF 16.383) Pub Date: 2021-12-09, DOI: 10.1021/jacs.1c09174 Keren Kahil, Steve Weiner, Lia Addadi, Assaf Gal

Not scalable – limited materials

Bio-inspired Multifunctional Architected Materials

- Architectures for light-weight, strong, tough materials
 - Airframes, satellites, counter pressure space suits, exoskeletons
- Development of Multifunctional Structures – nature does this well! We don't!
 - Self-healing, self-cooling
 - Heat dissipation
 - Radiation resistant
 - Adaptive camouflage
 - Multimodal sensing
 - Mechano-chemical sensing
- Implement into soft/hybrid robotic systems
 - Combine multiple features
 - Hierarchical structures

Many interesting and activated features are *mineralized* and at the *meso-nano-atomic scales*

And...how to capture this?

A natural impact-resistant bicontinuous composite nanoparticle coating

Wei Huang^{1,2}, Mehdi Shishehbor^{®3}, Nicolás Guarín-Zapata^{®3}, Nathan D. Kirchhofer^{®4}, Jason Li⁴, Luz Cruz⁵, Taifeng Wang⁵, Sanjit Bhowmick⁶, Douglas Stauffer^{®6}, Praveena Manimunda^{®6}, Krassimir N. Bozhilov⁷, Roy Caldwell⁸, Pablo Zavattieri³ and David Kisailus^{®1,2,5}

Hierarchically arranged nanoparticle-based coating

Kisailus, Zavattieri, et al., Nature Materials, 19(11):1236-1243

What can Biology teach us about making new materials? *Synthesis is key:*

- Solution-based low temperature processing
- Controlled nanostructured growth using organics
- Optimized structure to carry out function
- Traditional Engineering materials use high temperature, environmentally unfriendly methods

Biological Control (via templating organics, pH control, etc.) Affords Morphologically Unique Structures

Biological Aragonite

Geological Aragonite

Interfacial control key in synthesis and assembly

Oum

Controlled Nucleation and Growth of Biomaterials

 Biology uses transient disordered (hydrated and amorphous) precursor phases – stabilized by organic → proteins

 Crystallization often occurs during dehydration with structural organic controlling crystallography (e.g., phase, orientation)

Flexible magnetic teeth from a mollusk?

Lowenstam, H. A. (1962). GSA Bull. 73: 435-438; Lowenstam, H. A. (1974). In: The Sea E. D. Goldberg. New York, N.Y., John Wily & Sons: 715-796 Lowenstam HA, Weiner S. 1989. On Biomineralization. New York: Oxford Univ. Press. 324 pp

Weaver et al., Materials Today, **13** (2010) 42-52. Grunenfelder et al. Adv. Funct. Mat., 24(39), (2014) 6093-6104. de Obaldia et al. JMBBM, 48 (2015) 70-85. de Obaldia et al., J. Mechanics and Physics of Solids, 96 (2016) 511-534.

Organic-Mineral Interfaces: α-Chitin within and around rod...

Tooth 2 ~200nm particles on α -chitin fibrils

am

Magn WD 49597x 4.8

Wang et al. Adv. Funct. Mater., 23 (2013) 2908–2917.

Ferrihydrite aggregated nanocrystals growing on α -chitin fibrils α -chitin + protein? templates iron oxide nucleation

Wang et al. Adv. Funct. Mater., 23 (2013) 2908–2917.

Translating Biology to Nanotechnology at UCI

Porous TiO₂ Composite

Fast Charging / Long Lasting Batteries

Fuel Cells that are 1/160 the cost!

Water Purifying Filters

Structure-Directing Organic Scaffolds

Huang, Kisailus et al., Acc. Chem. Res. (2022), 55, 10, 1360-1371.

Synthesizing polymer-biopolymer-metal hybrids: Towards non-Biogenic Materials

15.00 kV 3.0 10 µs SE TLD 150 000 x

Potential for Scalable Manufacturing of Autonomous Structures

 Utilization of microbes to build and reuse structures

IOHNS HOPKINS

- To date: Limited set of microbes and minerals (e.g., CaCO₃)
- Potential for structures to be built in extreme environments with a broader base of material systems

Tuning ink and writing conditions for multi-functional structures

Summary

Biology utilizes organics to not only precisely control the storage, transport, nucleation, growth and transformation of nanomaterials, but provides function

Integration of biopolymer scaffolding plus biofunctionality guiding inorganic synthesis \rightarrow multifunctional materials

Translation towards Scalable Synthesis of Multifunctional Architected Materials

Acknowledgements

Post-doctoral Researchers

Wei Huang	Anna Pohl	Wen Yang	Jung-E	un Lee	Siva Ede
	<u>(</u>	Graduate Studer	<u>its</u>		
Taifeng Wang		Nicholas Yaraghi		Taige Hao	
John Connolly		Mehdi Shishehbor		Nicolás Guarín-Zapata	
Yuka Narahara		Ezra Sarmiento		Andrew Nguyen	
	<u>Ur</u>	ndergraduate Stu	<u>dents</u>		
Allison Pickle		Julian Cutler Maxi		millian Stark	
Pablo Zavattieri (Purdue) Jocelyne DiRuggiero (JHU) Luis Zepeda Ruiz (LLNL)		<u>Collaborators</u> Atsushi Arakaki (TUAT) Dula Parkinson (LBL) Michiko Nemoto (Okayama)		Mikhail Z Richard V Guillaum	hernenkov (BNL) Vuhrer (UWS) ne Freychet (BNL)
		Organisms			

Odontodactylus scyllarus, Cryptochiton stelleri, Phloeodes diabolicus

ß E RESEARCH LAB

<u>Funding</u> AFOSR, AFRL, ARO

Thank you !!!

Questions???

